
Optimizing OpenCL applications on Xilinx FPGA

[Extended Abstract of Technical Presentation]

Jeff Fifield Ronan Keryell Hervé Ratigner
Henry Styles Jim Wu

Xilinx, USA

ABSTRACT
In this presentation we focus on current Xilinx FPGA (Field-
Programmable Gate Array) platforms with the SDAccel
OpenCL environment. FPGA have the unique feature of
a reconfigurable architecture by opposition to CPU, GPU
or DSP which have a fixed architecture and are only pro-
grammable. For example the elementary functions in an
FPGA can be configured according to an addressable mem-
ory, as such the interconnection among them, the internal
memory organization, but also even the ultra high-speed in-
put/output of the chip to interface with the outside world.
This fine grain configurability allows high performance and
power efficiency. We introduce the architecture of modern
FPGA with their main building blocks and how functional
operations can be expressed. The translation of imperative
languages down to the hardware level is done through High-
Level Synthesis. It can be done in several ways with different
time/surface trade-off, for example by playing on parallelism
and pipelining.

CCS Concepts
•General and reference→Performance; •Computing
methodologies → Parallel programming languages;
Concurrent programming languages; •Hardware →
Reconfigurable logic and FPGAs; Hardware accel-
erators; Reconfigurable logic applications; Hardware-
software codesign; Best practices for EDA;

Keywords
OpenCL; FPGA; Optimizations

1. INTRODUCTION
OpenCL is a portable standard from Khronos Group with

an API to execute kernel programs on some heterogeneous
accelerators. Kernels are written in OpenCL C, C or C++
and can run under the control of a host program on various
architectures: CPU, GPU, FPGA, DSP...

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWOCL ’16 April 19–21, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4338-1/16/04.

DOI: 10.1145/2909437.2909447

Unfortunately, as for a sequential program running on a
CPU, there is no performance portability when it is about
reaching the maximum performance and power efficiency on
a given architecture. Some execution parameters may have
to be tweaked (as simple as changing the work-group layout)
or the architecture of the software has to be deeply changed
accordingly. Since there are more parameters under control
in an heterogeneous platform compared to a CPU, the explo-
ration space is quite wider. But the OpenCL model provides
a consistent framework allowing this design exploration.

In this presentation we focus on current Xilinx FPGA
(Field-Programmable Gate Array) platforms with the
SDAccel environment, the OpenCL implementation from
Xilinx. FPGA have the unique feature of a reconfigurable
architecture by opposition to CPU, GPU or DSP which have
a fixed architecture and are only programmable. For exam-
ple the elementary functions in an FPGA can be configured
according to an addressable memory, as such the intercon-
nection among them, the internal memory organization, but
also even the ultra high-speed input/output of the chip to
interface with the outside world. This fine grain configura-
bility allows high performance and power efficiency.

We introduce the architecture of modern FPGA with their
main building blocks and how functional operations can be
expressed. The translation of imperative languages down
to the hardware level is done through High-Level Synthesis.
It can be done in several ways with different time/surface
trade-off, for example by playing on parallelism and pipelin-
ing.

2. OPTIMIZATION OF OPENCL ON XIL-
INX FPGA

The OpenCL model defines the concept of work-group
(coarse-grain parallelism) with some work-items (fine-grain
parallelism). SDAccel synthesizes 1 hardware compute-unit
per work-group. The number of work-groups is the first
way to control the amount of generated hardware for a ker-
nel. OpenCL defines also a hierarchy of different memories
that are mapped on the different memory elements found
on the FPGA with different performance, size and power-
consumption trade-off.

On heterogeneous platform, optimization is mostly done
by managing carefully the memory hierarchy to minimize
expensive memory transfers by recycling data while doing
computations with intensive parallelism. It often requires
reorganizing the computation with some loop transforma-
tions such as loop tiling and loop fusions. All these trans-
formations are of course also the keystones of FPGA opti-



mizations, but on FPGA there are quite more opportunities
to play with.

But since FPGA are dynamically reconfigurable, it is pos-
sible to load different kernels in the FPGA according to the
different phases of the application execution, to have the
best optimized kernels for each phase.

Loop unrolling is a classical loop transformation to use
more resource with less control, leading to potentially
faster execution. The compiler has also more opportuni-
ties to do optimizations and vectorization. It can be done
manually but SDAccel recognizes some attributes such as
__attribute__((opencl_unroll_hint(...))) to do it in a
simpler way.

A classical optimization in HPC back from the 70’s with
CDC and Cray computers is the pipelining of loop itera-
tions. On hardware architectures it is very interesting be-
cause it requires only adding cheap registers to increase dra-
matically the throughput at the price of a moderate latency
degradation. It can be done manually in a cumbersome
way but can be done gracefully by using 2 different at-
tributes, to pipeline at the work-group level __attribute__
((xcl_pipeline_workitems)) or more precisely at the loop
level with __attribute__((xcl_pipeline_loop)).

As on other accelerators, carefully choosing where the
data are allocated is very important. On a GPU, a com-
mon issue is to have some external memory bank conflicts,
some conflicts on the internal crossbar or some conflicts on
the local memory banks. Interestingly, an FPGA is pro-
grammable at the hardware level, so why not changing the
architecture itself to avoid these conflicts for a specific ap-
plication? This can be done for example by selecting the
number of memory ports allocated to some kernel argu-
ments or even defining exactly the memory layout of some
local arrays __attribute__((xcl_array_partition(...))

) in block/cyclic/block-cyclic down to 1 register per array
element for crazy memory need without any conflict, but at
the price of more hardware resource usage.

Often applications can be decomposed in a data-flow or
functional programming way, with consumer kernels of data
produced by several kernels. The best optimization is to
fuse the kernels to eliminate the costly data transfers when
possible. If not possible, a first optimization is to use in-
ternal memory for the transfers or even OpenCL 2.0 pipes.
Pipes are FIFO to send data between producer/consumer.
It is very interesting on FPGA because it can be efficiently
implemented in hardware and avoid communication through
global memory compared to GPU. Unfortunately, OpenCL
pipes are not very useful yet because of the OpenCL 2.0 exe-
cution model: since there is no independent forward progress
guaranty in OpenCL 2.0, it may not possible to run at the
same time a producer and a consumer. But since FPGA are
programmable, SDAccel provides these features by having
all the related kernels implemented in hardware and running
at the same time without dead-locking on the pipe resources.
So it is possible to write OpenCL programs on FPGA with
some data-flow applications started by the host and run-
ning forever, such as networking, signal or video processing,
without any further host interaction. This leads to very high
performance and power efficiency.

Another interest of pipes is to use them to process data di-
rectly from I/O like 10 Gb/s Ethernet or HDMI in a stream-
lined data-flow way, minimizing the hardware and host in-
teraction.

As a way to improve locality and better use hardware data
transfers (DMA) on some specific bus such as connecting the
DDR4 external memory storing OpenCL global buffers, the
OpenCL kernel function async_work_group_copy() is very
useful to transfer data between local and global storage at
full speed and implement transfer and computation overlap-
ping.

Vectorization by using some OpenCL vector types is help-
ful to take advantage of the full width of some external mem-
ory bus instead of accessing them just with the width of some
scalar type, resulting in a waste of potential bandwidth.

For some extreme optimization cases, for example when
the full hardware control and optimization is required or
when some specific hardware components have to be used
from inside a kernel, a kernel can be written with some
C/C++ languages or even with lower level VHDL/Verilog.
It is similar to the existing concept of built-in or native
kernels in OpenCL but with the ability to provide its own
crafted implementation. The advantage is that even if the
kernel is very specifically optimized, it still benefits from
the higher-level OpenCL host API for the integration in the
whole application.

Of course all these optimizations are eased with the help
of the profilers, performance simulators and emulators pro-
vided in the SDAccel development environment. This pro-
vides a good trade-off between precision, compilation and
execution time since unfortunately on FPGA, the price for
this extreme versatility is the important time of compilation
when going down to the real hardware.

3. CONCLUSION
FPGA are rather new comers in the world of generic het-

erogeneous accelerators with the availability of new higher-
level programming models such as OpenCL or C/C++ with
#pragma for FPGA and not only GPU. The development
of higher level languages such as OpenCL C++ and SYCL
2.2 or OpenMP 4.5 will help their spread. The ability to
craft an application down to the hardware level can lead to
very high-performance and power-efficient execution. This
opens a new GP-FPGA revolution in the same way we saw
the GPU to GP-GPU (General-Purpose GPU) revolution 10
years ago.


