J Comput Virol
DOI 10.1007/s11416-007-0062-0

SSTIC 2007 BEST ACADEMIC PAPERS

Improving virus protection with an efficient secure architecture
with memory encryption, integrity and information leakage

protection

Guillaume Duc - Ronan Keryell

Received: 5 January 2007 / Revised: 15 July 2007 / Accepted: 18 August 2007

© Springer-Verlag France 2007

Abstract Malicious software and other attacks are a major
concern in the computing ecosystem and there is a need to
go beyond the answers based on untrusted software. Trusted
and secure computing can add a new hardware dimension
to software protection. Several secure computing hardware
architectures using memory encryption and memory integ-
rity checkers have been proposed during the past few years
to provide applications with a tamper resistant environment.
Some solutions, such as HIDE, have also been proposed to
solve the problem of information leakage on the address bus.
We propose the CRYPTOPAGE architecture which implements
memory encryption, memory integrity protection checking
and information leakage protection together with a low per-
formance penalty (3% slowdown on average) by combining
the Counter Mode of operation, local authentication values
and MERKLE trees. It has also several other security fea-
tures such as attestation, secure storage for applications and
program identification. We present some applications of the
CRYPTOPAGE architecture in the computer virology field as a
proof of concept of improving security in presence of viruses
compared to software only solutions.

1 Introduction

Many computer applications need certain levels of security,
confidentiality and confidence that are beyond the scope of
current software and hardware architectures. Of course, there
are many cryptographic algorithms, network protocols,

G. Duc (X)) - R. Keryell
ENST Bretagne, CS 83818, 29238 Brest Cedex 3, France
e-mail: Guillaume.Duc @enst-bretagne.fr

R. Keryell
e-mail: Ronan.Keryell @enst-bretagne.fr

secure operating systems and some applications that use these
methods, but all of them rely on a strong hypothesis: the
underlying software and hardware themselves need to be
secure. However this critical hypothesis is never verified,
except for small applications that can fit onto a smartcard,
for example.

Software applications, such as anti-virus or operating sys-
tems, can be used to verify the integrity of the execution con-
text or even repair it, but their execution themselves must be
protected. Furthermore, software architectures have grown
to a size far beyond what can be proved as inherently cor-
rect and contains unfortunately many errors, bugs. . . So, it is
interesting to add specific hardware support to improve the
global security of the system.

During the last few years, several hardware architectures
(such as XoM [27-29], AEGIS [36,37] and CRYPTOPAGE
[8,12,14,21,26]) have been proposed to provide computer
applications with a secure computing environment. These
architectures use memory encryption and memory integrity
checking to guarantee that an attacker cannot hinder the oper-
ation of a secure process, or can only obtain as little infor-
mation as possible about the code or the data manipulated
by this process. These secure architectures try to prevent, or
at least detect, physical attacks against the components of
a computer (for example, the Microsoft X-BOX video game
console was attacked in [19] by sniffing the bus of the pro-
cessor with a logic analyzer) or logical attacks (for example,
the administrator of the machine or a virus tries to steal or
modify the code or the data of an application).

Such architectures can, for instance, be very useful in dis-
tributed computing environments. Currently, companies or
research centers may be reluctant to use the computing power
provided by third-party computers they do not control on a
grid, because they fear that the owners of these computers
might steal or modify the algorithms or the results of the

@ Springer

G. Duc, R. Keryell

distributed application. If each node of the grid uses a secure
computing architecture that guarantees the integrity and the
confidentiality of the distributed application results, these
security issues disappear.

However, as the address bus is not modified in these secure
architectures, the memory access patterns are accessible to
the attacker. Zhuang et al. in [39] show that these memory
access patterns can be sufficient to identify certain algorithms
and so to obtain information about the code of a secure appli-
cation, in spite of the encryption.

To stop this information leakage, they present HIDE (Hard-
ware-support for leakage-Immune Dynamic Execution), an
infrastructure for efficiently protecting information leakage
on the address bus [39]. However, the impact of this infra-
structure on encryption and memory checking is not studied.

In this paper, we present the CRYPTOPAGE extension of
the HIDE infrastructure to provide, in addition to the pro-
tection of the address bus, memory encryption and memory
checking. We also study the impact of this architecture on
the computer virology field.

The rest of this paper is organized as follows. Section 2
describes the CRYPTOPAGE architecture. Section 3 presents
some applications that can benefit from this architecture.
Section 4 studies the relationships between this architecture
and the computer virology field. Section 5 presents infor-
mation about the performance of this system while Sect. 6
presents related work in this field.

2 Architecture

In this section, we present the security objectives and the key
components of the CRYPTOPAGE architecture.

2.1 Objectives of the architecture

The objective of our architecture is to allow the execution of
secure processes. We consider two properties:

e confidentiality: an attacker must obtain as little informa-
tion as possible about the code or the data manipulated by
the process;

e integrity: the proper execution of the process must not be
altered by an attack. If an attack is detected, the processor
must stop the program.

The processor has two new execution environment in
addition to the normal non-secure execution environment.
The first one protects the confidentiality and the integrity of
the secure processes that are running in this environment. The
second one only protects the integrity of the secure processes.

The processor must be able to execute secure processes
in parallel with other normal (non-secure) processes with

@ Springer

respect to an operating system adapted to the architecture
but not necessarily secure or trusted. One key hypothesis is
that the operating system itself does not need to be trusted. It
may be compromised, or at least, be too large to be bug-free.

We assume that everything outside the chip of the proces-
sor (for instance the memory bus, the hard drive, the operat-
ing system, etc.) is under the full control of an attacker. For
instance, he can inject bogus values in the memory, mod-
ify the operating system to wiretap processor registers or to
modify hardware contexts, execute secure and non-secure
processes of his choice, etc.

However, the attacker cannot directly or indirectly probe
inside the processor. In particular, we consider that timing
attacks [22], differential power analysis (DPA [23]) attacks,
etc. are avoided by other means beyond the scope of this arti-
cle. Moreover, we do not consider denial of service attacks
because they cannot be avoided (the attacker can choose not
to supply power to the processor).

The attacker can also modify the execution of system calls
but we consider that these attacks are similar to denial of
service attacks and that this problem should be taken into
account at the application level.

We want to protect the integrity and confidentiality of a
secure application against hardware attacks but we do not
protect it against itself. If the secure application contains
security holes, they can be exploited to modify its behavior.

2.2 Key mechanisms

In this section we describe the key mechanisms of the CRYP-
TOPAGE architecture implemented to achieve the security
objectives described above. The low-level details of these
mechanisms can be found in [7-14,21,26].

Figure 1 summarizes the CRYPTOPAGE architecture. The
blocks in grey are those which are present in a normal pro-
cessor and the other blocks are specific to the CRYPTOPAGE
architecture. In spite of the fact that there are many new mech-
anisms, they are relatively cheap to implement in hardware
compared to the number of transistors in existing processors.

Each CRYPTOPAGE processor is unique and has an embed-
ded private key used to decrypt the symmetric keys of secure
applications and to sign results. A certificate, signed by the
manufacturer of the processor, attests to the authenticity of
the corresponding public key. The private key can only be
used by the security mechanisms of the processor and is not
accessible by any attacker.

2.2.1 Confidentiality

In order to guarantee the confidentiality property, the CRYP-
TOPAGE architecture makes intensive use of encryption at
different levels. The basic idea is that everything that is out-
side of the processor, and so under the control of an attacker,

Improving virus protection with an efficient secure architecture with memory encryption, integrity and information leakage protection

Fig. 1 The CRYPTOPAGE ' ;
architecture ! ! Identification SHA-1

' buffer unit '

; Data Cach (permutat AESCM + |

| Processor aches eml]llr:i? ton CBC-MAC | !

1 —{ MmU ;

! Addresses I !

i Permutation Permutation '

! buffer :

‘ © (i 1

| REp, R, |

! TLB ETLB

T AES CBC :

! MERKLE MERKLE |

' Kpid,i, Kpid,d, Kpid,m tree tree .

! Verifier cache .

3 Hardware Hardware 3

! context AES CBC context '

' butter verifier butter '

, (plaintext) “‘ (encrypted) '

' Kproc,e Kproc,m 3

! Initial i

' AES L hardware !

‘ RSA context ' o E

' Random (encrypted) Secure LB ;;-

' number SKproc l storage ! g -

| generator Root tree ! =

3 Kproc,s verifier 3

! Chip |

must be encrypted. This includes the code and the data of
the secure processes when they are stored in the executable
file or in memory, and the hardware contexts of the secure
processes during interrupts.

As the processor is supposed to be impossible to be wire-
tapped and to be tampered, the information that is inside the
processor (data or code in caches for instance) can be stored
unencrypted for better performances.

Memory encryption First, the code and the data of a secure
process that is running in the execution environment that
protects the integrity and the confidentiality, are encrypted
while they are outside of the processor. Each secure process
has two symmetric keys, Kp;q; and K;q,q used to encrypt,
respectively, its code and its data.

The encryption unit takes place on the processor between
the highest level cache and the memory bus. As the unit of
transfer between the processor and the memory is a line, the
encryption engine works on lines. When a line is read from
memory, it is first decrypted and then stored in the cache.
When aline is unloaded from the cache, it is encrypted before
leaving the processor.

The encryption algorithm used is the AES [32] in the
counter mode of operation [33]. In this mode, a counter is
encrypted using the AES algorithm to generate a pad and this
pad is combined with the block, with a simple bitwise exclu-
sive or, to generate the encrypted block. To decrypt a block,

the pad is generated in the same way and combined with the
encrypted block to generate the decrypted block.

The main advantage of this mode is that, if the counter
used to encrypt a block is known, the pad can be computed
in advance without the data block itself. This is, in partic-
ular, useful during read operation from memory because,
if the counter is known, the pad can be computed while
the encrypted block is read from memory. If the encryption
engine is faster than the memory access, when then encrypted
block arrives in the processor, the end of the decryption only
requires one clock cycle (in the counter mode, the final oper-
ation is a simple bitwise exclusive or). So the latency added
by the decryption process is negligible.

In the CRYPTOPAGE architecture, the counter used to
encrypt a line is composed of the virtual address of the line
and a random number chosen for the memory page of the line
(see section on information leakage below). They are always
available before the memory access so our architecture ben-
efits from the advantage of the counter mode.

Interrupts During an interrupt, the hardware context of a
secure process (the hardware context contains the state of the
process, i.e., the values of all the registers of the processor)
is saved to one of several special buffers inside the proces-
sor called hardware context buffers. Only the processor has
access to these buffers so the operating system cannot wire-
tap the state of the process. If the number of secure processes
scheduled by the operating system is greater than the number

@ Springer

G. Duc, R. Keryell

of hardware context buffers in the processor, the operating
system can ask the processor to encrypt the hardware context
of a secure process and to store it in memory. It can also ask
the processor to load an encrypted hardware context from
memory and to decrypt it to a hardware context buffer. So,
even if an hardware context is in memory, the operating sys-
tem, or some other processes cannot access it thanks to the
encryption mechanism.

During an interrupt, after the storage of the hardware con-
text of the secure process in an hardware context buffer, the
content of the registers of the processor is erased so the oper-
ating system cannot access it. However, a secure process can
ask the processor not to erase the content of some registers,
for instance to allow the storage of the arguments of system
calls.

Information leakage on the address bus The CRYPTO-

PAGE architecture is based on the HIDE infrastructure [39].
This infrastructure reduces the information leakage that exists
on the address bus because, even if all the code and data of
a secure process is encrypted while they are transferred and
stored in memory, the address bus is not modify so an attacker
can retrieve the memory access patterns. Zhuang et al. in [39]
have shown that these memory access patterns can be suf-
ficient to identify certain algorithms and so to obtain infor-
mation about the code of a secure application, in spite of the
encryption and so, to violate the confidentiality property.

The HIDE infrastructure, as described in [39], memorizes
the sequence of addresses accessed by the processor and per-
mutes the memory space before an address recurs. More
precisely, the protected memory space is divided into sev-
eral chunks. This protection is implemented by modifying
the cache mechanism of the processor. Whenver a line that
belongs to a protected chunk is read from memory (during a
cache miss), it is stored in the cache, as usual, but it is also
locked. While locked, this line cannot be replaced or written
back to memory. Whenver a line needs to be flushed because
there is no space left in the cache for a new line and all lines
are locked, a permutation of the chunk occurs.

During this permutation, all the lines belonging to the
chunk that is being permuted are read (from memory or from
the cache), then the addresses of these lines are permuted and
the lines are unlocked and re-encrypted. So between each per-
mutation, a line is written to memory and read from memory
only once. In addition, the re-encryption of the lines pre-
vents an attacker from guessing the new address of a given
line inside a chunk after a permutation. With this mechanism,
an attacker cannot learn that one line has been read more than
another nor can he find interesting memory access patterns
at a grain finer than the chunk size. The current permutation
table for a chunk is encrypted and stored in memory.

To reduce the cost of the permutations, Zhuang et al. [39]
proposes to do the latter in the background. When the proces-

@ Springer

sor detects that the cache (or one set of the cache, depending
on its structure) is almost full, it begins a background per-
mutation. With this mechanism, the performance penalty is
negligible (1.3% according to [39]).

In the CRYPTOPAGE architecture, the secure processes are
protected with HIDE. The chunks used are the memory pages.
In addition, during the permutation of a page, two random
numbers are chosen by the processor. They are used by the
mechanisms that protect the integrity (they are included in
the computation of the MAC) and confidentiality (they are
included in the computation of the counter used to perform
the encryption) of the data of the page.

2.2.2 Integrity

In this section, we describe how the integrity of a secure
process is protected.

Memory integrity In the CRYPTOPAGE architecture, the
integrity of the code and the data of a secure process is pro-
tected by computing a Message Authentication Code (MAC)
with a symmetric key Kpiqn, specific to a secure process.
Since an attacker does not know this key, it cannot inject a
piece of data in memory because it cannot compute a valid
MAC for it. In addition, the address of the data protected is
also included in the computation of the MAC so an attacker
cannot permute two pieces of data in memory.

However, to protect the integrity of a line against replay
attacks (i.e., an attacker that puts, at a given address in mem-
ory, a value and its MAC that were previously stored at this
address), the MAC is not sufficient in itself. To solve this
problem, the computation of the MAC also includes a random
number that is specific to a memory page and chosen during
each permutation of the page.

The random number used to compute the MAC of the lines
of a memory page is stored with the other information of this
page (for instance, the permutation table needed by HIDE).
To speed up the access to these information, they are stored
in an extension of the Translation Lookaside Buffers (TLB),
called ETLB.

However, if an attacker can replay these pieces of informa-
tion (and so the random number that protects the integrity), it
can replay data in memory. So the CRYPTOPAGE architecture
has a mechanism to protect the information with respect to
a page against replay attacks. This mechanism is based on
hash trees (MERKLE tree).

A binary tree is built. Each node of the tree contains a
cryptographic hash of the content of its children. The leaves
of the tree contain a cryptographic hash of the information
about a page. The root of the tree is stored inside the proces-
sor so it cannot be replayed. When the information about a
memory page is load from memory to the ETLB, the corre-
sponding branch of the tree (from the leaf that corresponds to

Improving virus protection with an efficient secure architecture with memory encryption, integrity and information leakage protection

the page to the root) is checked. When they are modified, the
corresponding branch is updated. As the root of the tree is
unalterable, with this mechanism, an attacker cannot replay
the information about a page and so it cannot replay data in
memory.

Interrupts The integrity of any hardware context is pro-
tected with a MAC computed with a symmetric key embedded
in the processor, so an attacker cannot modify them, even if
the hardware contexts has to be stored outside of the proces-
Sofr.

An optional mechanism, based on a log storing informa-
tion about the storage of hardware context outside of the
processor, prevents an attacker from replaying an old hard-
ware context (i.e., trying to reload a secure process in a past
state).

2.2.3 Other mechanisms

Other mechanisms that can be useful to secure applications
are implemented in the CRYPTOPAGE architecture.

Signals A special mechanism is implemented to allow the
processing of software signals (used in UNIX operating sys-
tems). A signal requires the diversion of the normal execution
flow of a process but this situation can be seen as an attack
attempt by the CRYPTOPAGE architecture.

The secure processes can specify to the processor the
address of a function that has to be called whenever a signal
is triggered. The operating system, with a special instruc-
tion, can ask the processor to execute this signal handler for
a secure process. So, the operating system cannot modify the
execution flow as it wants. Another special instruction allows
the operating system to restore the original hardware context
(the one saved before the triggering of the signal) and so,
to restore the original execution flow, but while keeping the
modifications made in memory by the signal handler.

This mechanism also forces the signal starts and the signal
ends to be properly nested.

Secure storage The CRYPTOPAGE architecture provides
each secure process with a small secure non-volatile stor-
age space protected against replay attacks. In this place, a
secure process can store encryption keys or cryptographic
hashes that can be used to protect a larger storage space.

This secure storage mechanism is also based on a MERKLE
tree. The root of this storage tree is securely stored inside the
processor. Some of the operations of verification and update
of this tree are delegated to the operating system in order to
increase flexibility but without compromising the security of
the mechanism.

Program identification In some cases, for instance elec-
tronic voting or open-source digital rights management appli-
cations, it may be useful to have access to the code source (for
example to check that there is no backdoor in the program)
of a secure process that runs in the execution environment
that protects the integrity and confidentiality of its code and
data (because it manipulates sensitive data).

The CRYPTOPAGE architecture has a mechanism that
allows the user to know if an encrypted binary file contains
the same program that a non-encrypted binary file. So, if
the user is provided with exactly the same build environ-
ment that the one used to generate the secure application, it
can recompile it from the source and use this mechanism to
know whether the result of this recompilation is the same as
the secure process in spite of the encryption.

The processor computes a cryptographic hash over the
initial code and data of the secure process and returns it to
the user so it can compare it with the one computed over the
program it has rebuilt.

Attestation In some cases, a secure application may have to
prove to an external entity that it is running on a CRYPTO-
PAGE architecture and so that its confidentiality and integrity
are protected.

In the execution mode that protects both the integrity
and confidentiality, this feature is not necessary because the
secure application can hold secrets (for instance asymmet-
ric keys and certificates) directly embedded in its code (and
hence encrypted). These secrets can be used to established
a secure transmission channel (with the SSL protocol for
example) with an external entity. As the code of the secure
application is encrypted with the public key of the CRYPTO-
PAGE processor on which the application will be executed,
and as the corresponding private key is embedded inside the
CRYPTOPAGE processor, and so only accessible by it, if the
secure communication is properly established, the secrets
must have been deciphered and so, the application must be
running on a correct CRYPTOPAGE architecture.

However, this feature is useful in the execution mode that
only protects the integrity of a secure application because the
solution described before is no longer applicable. Indeed, the
confidentiality of the code and data manipulated by a pro-
cess in this execution environment is no longer protected. So
the CRYPTOPAGE architecture has a special instruction that
allow a secure process to ask the processor to sign a result.
The result given by the secure process and an identifier of
the secure process are signed with the public key of the pro-
cessor, and the certificate produced by the manufacturer of
the processor is attached. Thus, the external entity can check
the signature, verify that it was generated by a CRYPTO-
PAGE processor and identify the process that produced the
result.

@ Springer

G. Duc, R. Keryell

2.2.4 Operating system

To support the CRYPTOPAGE architecture, the operating sys-
tem needs to be adapted. However, it does not require to be
trusted because it cannot break the properties that the archi-
tecture guarantees to secure processes.

A special flag in the executable file of an application indi-
cates whether the application requires one of the two secure
execution environments (integrity only or integrity and con-
fidentiality) or not. If the operating system detects this flag, it
loads the code and data in memory and loads the initial hard-
ware context of the application (which contains its symmetric
keys, encrypted with the public key of the processor) in the
initial hardware context buffer. Then, it asks the processor
to decrypt it. When the decryption is achieved, the secure
process can be started from the initial hardware context that
has just been decrypted.

During interrupts and context switches, the operating sys-
tem has to manage the hardware context buffers. It may have
to ask the processor to encrypt the hardware context of a
secure process to store it in memory and to load and decrypt
the hardware context of another secure process. These oper-
ations can be time consuming, so the scheduler may give
the priority to the secure processes whose hardware contexts
are already present in an hardware context in the processor
because, in this case, the context switch is faster.

The operating systems also plays a part in several secu-
rity mechanisms of the CRYPTOPAGE architecture such as
the verification of the MERKLE tree that protects the infor-
mation about the memory pages or the verification of the
secure storage tree. These delegations reduce the hardware
modifications needed to implement these mechanisms and
allow more flexibility in their management.

2.2.5 Impacts on applications

In order to generate secure applications, the compilation tools
have to be adapted. After the link phase, the symmetric keys
(used for the encryption of the code and the data and the pro-
tection of their integrity) of the application are generated and
encrypted with the public key of the processor on which the
application will be executed. Next, the code and the data of
the application are encrypted using these keys.

The system calls also need some modifications. Before a
system call, a secure process must ask the processor not to
erase the registers where the arguments of this system call are
stored. If necessary, it must decrypt these arguments if they
are stored in memory so the operating system can access
them. These operations can be implemented in the system
call wrappers of the C standard library for instance.

@ Springer

3 Applications

Before presenting how CRYPTOPAGE can secure existing
applications, we present some applications impossible to do
without a secure execution mode such as the one provided
by CRYPTOPAGE.

3.1 Secure distributed computing

Grid computing is a very topical subject where the CRYP-
TOPAGE architecture could be very useful to provide secure
grid computing.

A grid groups together the computing power of many com-
puters which can be distributed on many different places.
These computers can be dedicated to this task (for instance it
is the case in the French grid project called Grid’5000 [17])
or not. In the latter case, the computers are owned by uni-
versities, companies or even the general public and only the
unused processor time is used by the grid applications (it is
the case, for instance, of the Folding@Home [15] project).
These grids are more and more used by research centers or
companies.

However, the entities that submit applications on the grid
have not, in general, a physical control on all the nodes of the
grid. The owner of one of these nodes can—by making an
physical or a software attack—recover the code or the data
of the application that is running on its node, or disturb it in
order to force it to generate false results. This lack of con-
fidentiality and integrity either on the code or the date can
raise a problem of intellectual property or performance (if
the computations have to be performed several times on dif-
ferent nodes to check their integrity). These issues can slow
down the adoption of the grids.

If all the nodes of the grid have a CRYPTOPAGE proces-
sor, the integrity and the confidentiality of the applications
that run on the grid can be guaranteed against attacks, and
s0, it would be possible to perform truly secured distributed
computing as we are going to detail.

First, the user who needs to do some remote computations
enciphers the program with a secret session key and con-
structs an enciphered binary with as many enciphered exe-
cution contexts as remote CRYPTOPAGE processors available
with each public key.

In this way, the user can run opaque computations remotely
and the computer owner cannot read the code nor the data,
neither modify them in an unnoticed way, since nobody (even
the owner) knows the secret key of a CRYPTOPAGE proces-
sor. But an attacker could build a virtual CRYPTOPAGE with
a public key pair and claim it is a genuine CRYPTOPAGE and
give the public key to the user. If the user ciphers the session
key with this public key, the attacker will recover the session
key and will be able to access the code and the data or even
modify them. To avoid this attack, a Public Key Infrastructure

Improving virus protection with an efficient secure architecture with memory encryption, integrity and information leakage protection

(PKT) must be deployed to attest that a CRYPTOPAGE public
key really corresponds to a genuine CRYPTOPAGE processor.

The user can verify the correct execution of the program by
adding an authentication protocol in the enciphered program.
All the communications between the user and the remote
nodes are encrypted using some cryptographical algorithm
implemented in the enciphered program and cannot be tapped
since the secure execution mode of CRYPTOPAGE avoids
information leakage during execution.

If the user does not need to hide the data or the code, the
program can run in the execution environment that only pro-
tects the integrity. But then, the attacker, with full control of
the remote computer, can peek in the authentication proto-
col instructions and secrets and thus attests anything to the
user. To avoid this attack, we use the attestation mechanism
added in CRYPTOPAGE to attest the correct execution of the
program in the integrity mode.

In this way, we can assure the user of a correct and opaque
execution of the program. But in a collaborative distributed
computing, the remote computer owner may want to know
what is running on its computer and not to give resources
to anybody for any usage. To attest the identity of a running
process even in secure mode, the operating system asks the
processor to compute a fingerprint of the process that can be
used by the computer owner to verify, in a global directory
for instance, that it is a given program and not another one.

As special interesting cases of remote secure executions,
we can cite:

e anti-virus where the code must execute securely on the
remote computer of an end-user. The end-user cannot peek
into the anti-virus binary because it runs in enciphered
mode to protect the intellectual property of the anti-virus
company but must be sure that the program is really the
anti-virus it claims to be. For this purpose, CRYPTOPAGE
attests with the fingerprint of the program that it is really
an anti-virus of the anti-virus companys;

e one can build open-source DRM (Digital Right Manage-
ment) systems, since the execution is enciphered by CRYP-
TOPAGE. In this way, the public keys are secretly generated
by the program with the secure execution mode and can be
used to decipher the media content according to the license
conditions granted by the copyright holder. But the user
must be sure in exchange that the DRM application does not
contains malicious code such as spywares. If the DRM pro-
gram is open-source, the user can inspect the code to verify
that it is correct. But to guarantee that secrets of the DRM
application remains secret, the process must run in secure
mode and thus, the binary must be enciphered by the pro-
ducer of the DRM and not the user. But then, how the user
can be sure that the secure process has really the binary
produced by the source code since it cannot peek in the
process? By reproducing the compilation chain and finger-

printing the code. First the user compile the open-source
DRM application according to exactly the same process
(same compiler, same libraries. . .) as documented by the
DRM producer. Afterward, it builds an enciphered binary
for its CRYPTOPAGE by using its public key. It starts exe-
cution of this process and asks its operating system to ask
the CRYPTOPAGE processor to compute the fingerprint of
the process. If it is the same as the fingerprint of the DRM
process, it is the same program.

3.2 Virtual smart cards

Smart cards are more and more used, at least in Europe, in
several applications from electronic banking to health insur-
ance, telecommunications, etc.

Thus, a person has more and more smart cards to carry. In
addition, only few computers are equipped with smart card
readers and so we cannot take into account the security of
the smart cards during computer based operations (online
purchase for instance).

With the CRYPTOPAGE architecture, it is possible to cre-
ate virtual smart cards. The idea is to turn each smart card
into a secure application that will run only on this instance
of the CRYPTOPAGE architecture. The security mechanisms,
which protect the integrity and confidentiality, guarantee the
same security properties than smart cards. The secrets (asym-
metric keys for instance) that are normally embedded in
the smart card can be directly integrated in the encrypted
executable file. The non-volatile memory of the smart card
can be replaced by the secure storage mechanism. Finally,
the communication channels between the outside world (the
reader) and the card are replaced by the different input/output
channels that can be used by the applications (inter-process
communication, network sockets, etc.).

Thus, the smart cards of a user can be totally dematerialized
and, for instance, be put together and used on a computer
equipped with a CRYPTOPAGE processor (for non-mobile
applications) or on a small personal digital assistant or even
on a mobile phone with a CRYPTOPAGE processor (for mobile
applications).

The program identification feature of CRYPTOPAGE can
also be used in this case to allow the user to access the source
code of the smart cards and thus verify that they do what they
have to do.

3.3 Other applications
Several other applications can use the two secure execu-
tion environments provided by the CRYPTOPAGE architec-

ture, such as electronic voting systems, online commercial
applications (business, banking. . .), etc.

@ Springer

G. Duc, R. Keryell

4 Benefits for the computer virology field

In this section, we will present the relationships between the
CRYPTOPAGE secure architecture and the field of computer
virology and the benefits of this architecture to fight against
viruses or malicious codes.

4.1 Processes isolation

In the CRYPTOPAGE architecture, the secure processes are
totally isolated from the operating system or from the other
processes (secure or not). The code and the data of a secure
process cannot be altered, its execution cannot be disturbed
(if an attack that may have an impact on the execution of a
secure process is detected, the secure process is stopped so it
cannot produce false results) and, if it is running in the exe-
cution environment that also guarantees its confidentiality, it
cannot be wiretapped.

So, if an anti-virus program runs as a secure process, its
execution cannot be altered by a virus that would try to pre-
vent the anti-virus from being able to detect it. However, the
virus can still alter the operating system to prevent it from
launching the anti-virus program but this attack can be miti-
gated if the anti-virus has a method to show to the user that
it is still running. A simple case is that a secure application,
that wants to be sure that the anti-virus runs, explicitly com-
municates with an enciphered channel with the anti-virus.
To have this communication working, the operating system
must run the anti-virus process to avoid denial of service on
the application and then the anti-virus can do its job.

In addition, a malicious software cannot wiretap a secure
process to steal some information such as the encryption keys
generated during the creation of a SSL/TLS tunnel since all the
data are covered.

The integrity and the confidentiality of the data stored by a
secure process using the secure storage feature of the CRYP-
TOPAGE architecture are also protected. This secure storage
can, for instance, be used to store user’s certificates, secret
keys and passwords, the encryption keys and licenses used
by digital rights management applications, etc.

However, if the input/output devices (keyboard, mouse,
graphics card) are not modified, a malicious program (a key-
logger for instance) can still wiretap the communications
between a secure process and the user of the computer and
so retrieves passwords for instance.

4.2 Code injection

The CRYPTOPAGE architecture also prevents an attacker from
injecting a piece of code though data channels into a secure
process because the encryption key and the verification keys
used to encrypt or protect the code and the data of a secure
process are different. So if an attacker tries to inject a piece

@ Springer

of code with an overflow buffer for example, it would be
encrypted using the key dedicated to the data and read again
and decrypted and verified with the key dedicated to the code.

Most processors have already a mode to disable execution
in data area at a memory page level that can mitigate direct
code injection (unfortunately, this mode is far too recent on
Intel or AMD PC processors with No-eXecution bit, com-
pared to other processors) but this feature adds another level
of protection.

However, this feature does not protect a secure process
from jumping to a piece of code that is already in it (for
instance return to libc attacks). It also does not prevent buffer
overflows.

4.3 Reverse engineering

As we have seen, the CRYPTOPAGE architecture has several
dual features that can mitigate the threat of computer viruses.
However, it has also drawbacks.

If a malicious program is running in the execution envi-
ronment that protects its confidentiality, it is impossible to
analyze it to discover what it does. This can be problematic,
for instance, for anti-virus companies that would not be able
to study an encrypted virus. However, some information still
leak from a secure process such as system calls or network
operations.

The program identification feature of the CRYPTOPAGE
architecture allows the user to be sure that an encrypted
binary file correspond to a given source code. It can decide not
to execute a secure processes if it do not have the correspond-
ing source code and so that could be a malicious application.
However, this is only possible if the user is provided with the
source code of the secure applications and the same building
environment that the one used to compile them.

5 Evaluation and results

In this section, we use the same architectural parameters
as [39] to evaluate the performance of our architecture. They
are summarized in Table 1. The AES unit is fully pipelined
and its latency is 11 cycles.

To evaluate the CRYPTOPAGE architecture, we ran several
SPEC2000int [18] benchmarks with the SimpleScalar [1]
out-of-order simulator modified to implement our architec-
ture. To reduce the time required to perform the simulations,
we skipped the first 1.5 billion instructions and we performed
a detailed simulation for 200 million instructions.

In Fig. 2a, we compare the instructions per cycle (IPC)
ratio of each benchmark for three different implementations:

e our implementation of the HIDE [39] infrastructure (8K
chunks, all chunks protected, no layout optimizations);

Improving virus protection with an efficient secure architecture with memory encryption, integrity and information leakage protection

Table 1 Architectural parameters used in simulations

Architectural parameter Specifications
Clock frequency 1 GHz
Cache line size 32 bytes

Data L1

Instruction L1

L1 miss latency
Unified L2

L2 miss latency

ITLB

DTLB

TLB miss latency
Memory bus

Memory latency

Page size

Fetch/decode width
Issue/commit width
Load/store queue size
Register update unit size
Encryption algorithm
Encryption block length

Encryption latency

Direct mapped, 8 kB, LRU

Direct mapped, 8 kB, LRU

1 cycle

Four-way associative, | MB, LRU

12 cycles

Four-way associative, 64 entries, LRU
Four-way associative, 128 entries, LRU
30 cycles

200 MHz, 8 bytes wide

80 (first), 5 (inter) cycles

8 kB

32/8 per cycle

8/8 per cycle

64

128

AES

128 bits (so [= 2)

11 cycles

e a basic implementation of our architecture (without a
MERKLE tree cache, the instructions have to be checked

before being executed);

e an advanced implementation of our architecture (with a
fully-associative MERKLE tree cache of 512 entries, specu-
lative execution of instructions during integrity checking).

All the IPC are normalized to the original value obtained
when we run the benchmarks on a normal, unmodified, archi-
tecture without any security features.

Our basic architecture has exhibited bad results (up to

50% slowdown on some benchmarks). This is partly due to
the high cost of the verification of the MERKLE tree at each
TLB miss, especially with the benchmark mcf which has a
high TLB miss ratio.

The advanced version of our architecture has exhibited
good results. The average slowdown is only 3% and the worst
is 7.4% (with the benchmark parser).

In Fig. 2b, we compare the effect of four different sizes
for the MERKLE tree cache: without a cache, with a 256-entry
cache, with a 512-entry cache and with a 1,024-entry cache.
We see that the introduction of a cache, even a small one, has
a great impact on the performance of the applications. How-
ever, the increase in the size of this cache has only a minor
impact because the number of memory pages used by these
applications is far greater than the number of entries in the
cache. The ideal solution would be that the size of this cache

would be sufficient to store all the page information and all
the nodes of the MERKLE tree.

The storage of the MAC increases the memory usage of the
secure program by 50% using our parameters. To reduce this
memory footprint, the MAC can be computed over several
lines instead of only one, to the detriment of the time needed
to check this MAC and of the memory bus use. Figure 2c
shows the impact of computing the MAC over one, two and
four cache lines without speculative execution of instruc-
tions (CRYPTOPAGE architecture with a 512-entry MERKLE
tree cache). The mean performance penalty is 4.4% for com-
puting the MAC over two cache lines and 11.7% over four
cache lines. If we execute the instructions before their con-
trol, the performance penalty is very small (less than 1%, as
shown in Fig. 2d).

We used the SimpleScalar micro-architecture simulator
to obtain performance results that can be compared with
the other architectures that also use SimpleScalar or similar
micro-architecture simulators. However, it only simulates the
execution of a process itself and does not take into account the
impact of the operating system or other processes running on
the processor. For instance, the kernel of the operating system
is normally called frequently with a clock interrupt in a mul-
titask operating system, and this execution can increase the
cache miss rate of the process which was running.

We are currently working to estimate the hardware cost
(number of logic gates) of our modifications.

6 Related work

Several secure architectures have been proposed in the past.
We can basically divided them into two categories: the secure
architectures that use bus encryption and those that use an
external co-processor.

The idea of using an encrypted bus has been introduced
by Best in [2-5]. The processor has a secret key that it uses to
decrypt a program stored in memory. The encryption guar-
antees the confidentiality of the program. However, the pro-
cessor supports the execution of only one process and does
not protect its integrity.

In [24], Kuhn has proposed to integrate an asymmetric key
pair in the secure processor in order to facilitate the diffusion
of the secure applications. He has also proposed a mecha-
nism that allows the execution of an operating system and
several secure processes.

In [27], Lie et al. has proposed the XOM (eXecute-Only
Memory) architecture that guarantees the confidentiality of
secure processes but also their integrity by computing an
authentication value (MAC) for each line stored in memory.
Thus, any attempt to modify the content of the memory would
be detected by the processor.

@ Springer

G. Duc, R. Keryell

~_~
&0
~

222 099 2.37 037 097 067 1.76 1.00 1.95 0.88

0.8
06

0.4

Normalized IPC

02

= Q o
a o
> > £

gzip

o
@
o

parser
perlbmk
vortex
bzip2
twolf

HIDE ——=3 CP/HIDE wmamem CP/HIDE Lazy 512 v

Comparison for three architectures.

(b)so
50
3
c 40
2
g
] 30
<)
S
20
O
o
10
0 _ it | g [[|
— x
2 3 Q [€ a ¥ N =
5 § % E § £ § 5 § 2
a [} > < =
o
CP/HIDEOQO —— CP/HIDE 256 asmeaan

CP/HIDE 512 msssmx CP/HIDE 1024

Slowdown comparison for four Merkle cache sizes.

Fig. 2 Simulation results

In [36], Suh et al. has introduced the AEGIS architecture.
This architecture use two new methods to protect the integrity
of the memory against replay attacks (XOM was vulnerable
to these attacks). The first method [16] is a MERKLE tree
computed over the whole memory space (this method was
also proposed by Lauradoux and Keryell in [26]). The cache
hierarchy of the processor is used to improve the speed of the
control. However, even with the use of the cache, the perfor-
mance penalty of this control mechanism is 20%. The second
method is an off-line memory checker built using incremen-
tal hash functions. An off-line memory checker only checks
the integrity of a set of transactions whereas on-line memory
checkers check the integrity of memory during each mem-
ory transaction. Off-line memory checkers are faster but the
control function has to be called before each security-critical
instruction. But between each control, the instructions are
executed without verification and this can cause some infor-
mation leakages in case of this mechanism is combined with
memory encryption.

@ Springer

(c) 222 099 2.37 037 097 067 176 1.00 1.95 0.88
ik
08
O
o
B o6t
N
©
E oaf
(e}
b4
02t
0 - X x [s\)
o = Q o > o =
5 ¢ & e ¢ E § £ § 2
2 B s =
Q.
1MAC/1line ——=3 1MAC/2lines teeesse 1 MAC /4 lines msssen
Slowdown comparison for different MAC per cache
line ratio.
aD——-
L 222 099 237 037 097 067 176 100 195 088
o 08f
o
® osf
N ’
£
5 04¢f
b4
02}
0 —

- o o
(=% o
> > £

gzip

Q
©
o

parser
erlbmk
vortex
bzip2
twolf

Q
1MAC/1line ——=3 1MAC/2lines mmmmm 1 MAC/4 lines mm—

Slowdown comparison for different MAC per cache
line ratio (speculative execution).

The works on the domain of bus encryption architectures
are mainly academic. Only few architectures was commer-
cialized. One of them is the DALLAS DS5000 family [6]. The
processors of this family can execute an encrypted program
stored in memory. However, they do not offer a protection of
the integrity and they were attacked by Kuhn in [25].

Another way to allow the execution of secure processes
is to use a co-processor. This is for instance the case with
the 1BM 4758 [20,34,35] which is a shielded PCI card that
can be added to a standard PC. The card contains a proces-
sor, some cryptographic hardware accelerators, standard and
flash memory. The programs can run inside the card. If an
attacker tries to tamper the card, an auto-destruction mecha-
nism is triggered.

We also have to mention the efforts of the Trusted Com-
puting Group [38] and of Microsoft with its project Next
Generation Secure Computing Base (NGSCB) [30,31] in order
to secure general purpose computers. However, their objec-
tives in terms of security are different from ours. We want

Improving virus protection with an efficient secure architecture with memory encryption, integrity and information leakage protection

to protect the integrity and confidentiality of the code and
data of the processes that are running on our architecture,
even in the case of a hardware attack, whereas they want to
provide strong isolation at the software level between pro-
cesses, remote attestations that the hardware and software
are in a given state, sealed storage and a secure path between
the input devices to the application. Our objectives cannot be
reached by simply using a Trusted Platform Module (TPM)
and a secure operating system.

7 Conclusions and future work

In our computer and network centric world, computer reli-
ability and security is a bigger concern than ever. Security
must be addressed at all levels and software integrity is not the
easiest part to ensure with the increasing complexity going
far beyond what can be automatically proved as secure. Up to
now, software integrity has been warrantied by other software
procedures and it is a source of intractability.

Hardware support to increase software security seems a
promising approach to complete a pure software solution.
Research groups have already given solutions such as the TPM
from the Trusted Computing Group [38] but there are strong
hypothesis on the behaviour and the security of the software
and operating system on the platform. Any software security
breach can be exploited by a computer virus and hardware
attacks are not considered outside the TPM. Most other secure
architectures are in the smartcard area but even if smartcards
have increasing performance, they cannot cope with the per-
formance of general purpose processors. Thus there is a need
to go further in the choice between performance and secu-
rity and it is time to use more transistors from the MOORE’s
law stock for security instead of only throwing all of them at
performance.

In this work, we described the CRYPTOPAGE, an advanced
secure architecture which implements a cheap but secure
memory encryption and protection mechanism, based on the
HIDE architecture and recursive hash functions with aggres-
sive caching, which prevents information leakage from appli-
cations on the data and address bus and can resist to active
external attacks, even in presence of a malicious operating
system or logic analyzer.

The basic ideais to add a MERKLE hash tree only at a coarse
grain level (the operating system page descriptor TLB) to pro-
tect the architecture against replay attack at a low penalty
cost. A few novel secure instructions are added to delegate
securely the security management to the untrusted operating
system and simplify the hardware secure mechanism.

Once the security is granted at the TLB level, some secrets
are enciphered and added to the TLB to efficiently imple-
ment a memory encryption and address shuffling inside each

memory page based on counter mode encryption and an anti-
replay protection based on a CBC- MAC.

We already have a GNU/Linux version supporting prelim-
inary secure mechanisms of CRYPTOPAGE. This kernel can
run in the plain insecure mode and manage insecure or secure
processes. Even if the secure processes are under control of
the operating system, the secure architecture ensures pro-
cess integrity and confidentiality and stops execution if the
operating system or other piece of software does not play its
role.

The performance penalty of these mechanisms, compared
to a normal non-secured architecture, turns out to be only
about 3% on average on some SPEC2000int benchmarks,
which is far smaller than that achieved by previous works.
This result is achieved thanks to the property that one line of
memory is read and written only once between each chunk
permutation.

We described some useful applications of the CRYPTO-
PAGE architecture to solve some common security problems
and we listed some impacts of CRYPTOPAGE on the com-
puter virology field. Secure processes can run user appli-
cations in a safe way even in presence of virus or exter-
nal hardware attacks or, worse, operating system corruption.
A classical anti-virus software will take obvious advantage
to run in a secure mode since it is a critical part of many
security policies. CRYPTOPAGE provides also some secure
storage accessible in a secure way that cannot be modified
by an attacker without uncovering the forgery. This integrity
and confidentiality of this secure storage is a base to global
secure distributed infrastructure. At last, process authentica-
tion and signature of results can prove that a given program
ran correctly and not another one instead, warrantying no pro-
cess hijack. This architectural support can leverage the clas-
sical security by obscurity approach (code obfuscation. . .).
Since CRYPTOPAGE can run a process in a secure mode with
identity attestation, even critical components (secure rout-
ing, antivirus, DRM. . .) can be open-source since everybody
can verify that the running program is correct, without being
able to peek in or modify the data. So we can envisage a true
collaborative secure distributed computing, with users
securely running their secure processes on remote untrusted
computers but with CRYPTOPAGE, without bothering about
results tampering or confidentiality issues. The owners or
administrators of the remote computers will be able to accept
or refuse execution of these opaque processes according clas-
sical trust rules or, more interestingly, on the attestation by
CRYPTOPAGE that the processes are executing some given
source programs and not some others.

To go further, we are now working to extend our propo-
sition to multicore and multiprocessor systems and to apply
our architecture to secure distributed high performance com-
puting. We need to go on porting GNU/Linux to the latest ver-
sion of CRYPTOPAGE to deal with secure storage, memory

@ Springer

G. Duc, R. Keryell

and process authentication. To ease secure virtualization, we
are also considering to virtualize CRYPTOPAGE itself to be
able to run various CRYPTOPAGE domains with various oper-
ating systems securely protected without relying on a trusted
virtualization monitor.

Acknowledgments This work is supported in part by a Ph.D. grant
from the Délégation Générale pour I’Armement (DGA, a division of
the French Ministry of Defense), and funded by the French National
Research Agency (ANR) under contract ANR-05-SSTA-005-03 SAFE-
SCALE. The authors wish to thank Jacques Stern for his valuable com-
ments on this project, Sylvain Guilley and Renaud Pacalet for their
insightful discussions in the GET- TCP project.

References

10.

11.

12.

13.

14.

15.

. Austin, T., Larson, E., Ernst, D.: SIMPLESCALAR: An infrastructure

for computer system modeling. Computer 35(2), 59-67 (2002)

. Best, R.M.: Microprocessor for executing enciphered programs.

Technical Report US4168396, US Patent, Sept 1979

. Best, R.M.: Preventing software piracy with crypto-microproces-

sors. In: IEEE Spring CompCon’80, pp. 466—469. IEEE Computer
Society, February 1980

. Best, R.M.: Crypto microprocessor for executing enciphered pro-

grams. Technical Report US4278837, US Patent, July 1981

. Best, R.M.: Crypto microprocessor that executes enciphered pro-

grams. Technical Report US4465901, US Patent, August 1984

. Dallas Semiconductor. DS5002FP Secure Microprocessor Chip,

July 2006. http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf

. Duc, G.: CRYPTOPAGE—an architecture to run secure pro-

cesses. Diplome d’Etudes Approfondies, Ecole Nationale Supéri-
eure des Télécommunications de Bretagne, DEA de I’Université
de Rennes 1, June 2004. http://enstb.org/™ gduc/dea/rapport/
rapport.pdf

. Duc, G.: Support matériel, logiciel et cryptographique pour une

exécution sécurisée de processus. Ph.D. thesis, Ecole Natio-
nale Supérieure des Télécommunications de Bretagne (2007).
http://enstb.org/~ gduc/these/these.pdf

. Duc, G., Keryell, R.: Portage d’un systéme GNU/LINUX

sur I’architecture sécurisée CRYPTOPAGE/x86. Technical report,
ENST Bretagne, December 2004. http://info.enstb.org/projets/
cryptopage/documents/techreport_200412.pdf

Duc, G., Keryell, R.: The concept of secure processes for LINUX
on the CRYPTOPAGE/x86 secure architecture. Technical report,
ENST Bretagne, April 2005. http://info.enstb.org/projets/
cryptopage/documents/techreport_200504.pdf

Duc, G., Keryell, R.: Portage de I’architecture sécurisée CRYPTO-
PAGE sur un microprocesseur x86. In: Symposium en Architecture
nouvelles de machines (SympA’2005), pp. 61-72, April 2005
Duc, G., Keryell, R.: CRYPTOPAGE: an efficient secure architec-
ture with memory encryption, integrity and information leakage
protection. In: Proceedings of the 22th Annual Computer Security
Applications Conference (ACSAC’06), pp. 483-492. IEEE Com-
puter Society, December 2006

Duc, G., Keryell, R.: CRYPTOPAGE/HIDE: une architecture efficace
combinant chiffrement, intégrité mémoire et protection contre les
fuites d’informations. In: Symposium en Architecture de Machines
(SympA’2006), October 2006

Duc, G, Keryell, R., Lauradoux, C.: CRYPTOPAGE: Support maté-
riel pour cryptoprocessus. Techn. Sci. Inform. 24, 667-701 (2005)
Folding@home distributed computing, May 2007. http://folding.
stanford.edu/

@ Springer

17.
18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Gassend, B., Suh, G.E., Clarke, D., van Dijk, M., Devadas, S.:
Caches and hash trees for efficient memory integrity verification.
In: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA’03), pp. 295-306,
February 2003

Grid’5000, May 2007. http://www.grid5000.fr

Henning, J.L.: SPEC cPU2000: measuring CPU performance in the
new millennium. IEEE Comput. 33(7), 28-35 (2000)

. Huang, A.: Keeping secrets in hardware: the Microsoft XBox (TM)

case study. Technical Report Al Memo 2002-2008, Massachusetts
Institute of Technology, May 2002

IBM PCI cryptographic coprocessor, May 2007. http://www.03.
ibm.com/security/cryptocards/pcicc/overview.shtml

Keryell, R.: CRYPTOPAGE-1: vers la fin du piratage informatique?
In: Symposium d’Architecture (SympA’6), pp. 35-44, Besanton,
June 2000

Kocher, P.C.: Timing attacks on implementations of DIFFIE-
HELLMAN, RSA, DSS, and other systems. In: Proceedings of the
16th Annual International Cryptology Conference on Advances
in Cryptology (CRYPTO’96), vol. 1109, pp. 104-113. Springer,
Heidelberg, August 1996

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Pro-
ceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO’99), vol. 1666, pp. 388—
397. Springer, Heidelberg, August 1999

Kuhn, M.: The TRUSTNO! cryptoprocessor concept. Technical
Report CS555, Purdue University, April 1997

Kuhn, M.G.: Cipher instruction search attack on the bus-encryp-
tion security microcontroller DS5002FP. In: IEEE Transaction
on Computers, vol. 47, pp. 1153-1157. IEEE Computer Society,
October 1998

Lauradoux, C., Keryell, R.: CRYPTOPAGE-2: un processeur
sécurisé contre le rejeu. In: Symposium en Architecture et Adé-
quation Algorithme Architecture (SympAAA’2003), pp. 314-321,
La Colle sur Loup, France, October 2003

Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D.,
Mitchell, J., Horowitz, M.: Architectural support for copy and tam-
per resistant software. In: Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IX), pp. 168-177, October
2000

Lie, D., Trekkath, C.A., Horowitz, M.: Implementing an untrusted
operating system on trusted hardware. In: Proceedings of the 9th
ACM Symposium on Operating Systems Principles (SOSP’03),
pp- 178-192, October 2003

Lie, D.J.: Architectural support for copy and tamper-resistant soft-
ware. Ph.D. thesis, Stanford University (2004)

Microsoft Corporation. NGSCB: Trusted Computing Base and
Software Authentication (2003). http://www.microsoft.com/
resources/ngscb/documents/ngscb_tcb.doc

Microsoft Corporation. Security Model for the Next-Generation
Secure Computing Base (2003). http://www.microsoft.com/
resources/ngscb/documents/NGSCB_Security_Model.doc

NIST. Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication 197, November 2001

NIST. Recommendation for block cipher modes of operation.
Special Publication 800-38A, December 2001

Smith, S.W.: Trusted Computing Platforms: Design and Applica-
tions. Springer, Heidelberg (2004)

Smith, S.W., Weingart, S.: Building a high-performance, program-
mable secure coprocessor. Comput. Netw. 31(9), 831-860 (1999)
Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.:
AEGIS: Architecture for tamper-evident and tamper-resistant pro-
cessing. In: Proceedings of the 17th International Conference on
Supercomputing (ICS’03), pp. 160-171, June 2003

http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://enstb.org/$^{sim }$gduc/dea/rapport/penalty -@M rapport.pdf
http://enstb.org/$^{sim }$gduc/these/these.pdf
http://info.enstb.org/projets/ cryptopage/documents/techreport_200412.pdf
http://info.enstb.org/projets/penalty -@M cryptopage/documents/techreport_200504.pdf
http://folding. stanford.edu/
http://www.grid5000.fr
http://www.03. ibm.com/security/cryptocards/pcicc/overview.shtml
http://www.microsoft.com/ resources/ngscb/documents/ngscb_tcb.doc
http://www.microsoft.com/ resources/ngscb/documents/NGSCB_Security_Model.doc

Improving virus protection with an efficient secure architecture with memory encryption, integrity and information leakage protection

37. Suh, G.E., O’Donnell, C.W., Sachdeyv, I., Devadas, S.: Design and 39. Zhuang, X., Zhang, T., Pande, S.: HIDE: an infrastructure for effi-

implementation of the AEGIS single-chip secure processor using ciently protecting information leakage on the address bus. In:
physical random functions. In: Proceedings of the 32nd Annual Proceedings of the 11th International Conference on Architec-
International Symposium on Computer Architecture (ISCA’05), tural Support for Programming Languages and Operating Systems
pp- 25-36. IEEE Computer Society, June 2005 (ASPLOS-XI), pp. 72-84. ACM Press, October 2004

38. Trusted Computing Group, February 2007. http://www. trusted-
computinggroup.org

@ Springer

http://www. trustedcomputinggroup.org

	Improving virus protection with an efficient secure architecturewith memory encryption, integrity and information leakageprotection
	Abstract
	Introduction
	Architecture
	Objectives of the architecture
	Key mechanisms
	Confidentiality
	Integrity
	Other mechanisms
	Operating system
	Impacts on applications
	Applications
	Secure distributed computing
	Virtual smart cards
	Other applications
	Benefits for the computer virology field
	Processes isolation
	Code injection
	Reverse engineering
	Evaluation and results
	Related work
	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

