
Loosely Coupled Accelerators for Reconfigurable SoC

Jean-Christophe Le Lann and Bernard Pottier
Université de Bretagne Occidentale

LESTER, FRE CNRS 2734
Brest, France

lelann.jean-christophe@neuf.fr
bernard.pottier@univ-brest.fr

Matthieu Godet, Ronan Keryell and The
Nhan Luong

Computer Science Department
ENST-Bretagne
Brest, France

MatthieuGodet@hotmail.com
Ronan.Keryell@enstb.org

TheNhan.Luong@enst-bretagne.fr

Abstract

Loosely coupled accelerators allow an intensive “pure
software program” (PSP) to share data seamlessly with ac-
celerators. The method involves rewriting the source code,
the hardware synthesis of the accelerated parts, and, of
course, an architectural support.

At algorithm design time, processing is translated into
coarse grain steps. Steps group a set of data buffers to be
consumed and produced by an accelerator, with a function
operating on these buffers. The function, with its associ-
ated communications, are defined statically and can be un-
derstood as very large instructions operating on very large
operands. The support hardware can be a reconfigurable
unit or a massively parallel processing array inside aSys-
tem on Chip(SoC).

At run-time, the PSP first produces a queue of buffers
as fetch and store descriptions to occur between the main
memory and the accelerator local memories. The content
of the buffers is then transferred by a DMA communica-
tion engine with some stride-enabled scatter-gather capa-
bilities to compact data in the buffers of the accelerators.
Execution is then a coarse grain program with loops apply-
ing accelerated functions to sets of local buffers. Each step
overlaps operations on main memory, communications, and
local processing in a predictable way.

This paper describes the principle with an illustration
on a simple linear algebra example. It describes a basic set
of tools that have been developped to validate the concept:
the compiler-assisted production of communication queues
and accelerator code that can contains some SIMD par-
allelism, an example of a communication engine that has
been modeled as a System-C program, and the preparation
of accelerator code. This code is currently sequential, but
is intended to be synthesized on fine or coarse grain recon-
figurable units under time related constraints coming from

SoC characteristics and level of performances expected for
the accelerator service.

1 Designing hardware or writing applica-
tions?

System on Chip (SoC) offers a gradation of choices from
pure specific design to multiprocessor platforms. Using em-
bedded FPGA to increase flexibility seems to place the re-
configurable SoC (RSoC) at midway from hardware design
toward parallel processing platforms.

In this comparison the weight of software is largely in-
creased by taking as reference parallel programming. We
propose a new architectural interpretation of the RSoC that
can be of great interest for productivity based on software
tools, compilers and high level languages, following a sem-
inal approach taken from [5] about stream computing.

A meaningful definition for an RSoC platform is the as-
sociation of a control processor (CPU), an interface to a
main memory (MM), an interconnection network and one
or several reconfigurable units (RU). This is a very general
organization on which RU can be used to implement dy-
namically reconfigured accelerators or permanent upgrad-
able functions. Based on this definition, there are several
execution modes associated to programming paradigms: se-
quential, memory-oriented programming, SIMD, MIMD,
stream and object-oriented programming. . .

The paper focus on a sequential execution style (but of
course, each sequential part could be seen as a thread of
a multi-threaded bigger application), where a coarse grain
simple machine executes forever a cycle shown on Table 1.

The three operations are pipelined allowing to overlap
communications and computations. The buffer transport is
prepared with the assistance of a compiler, according to lo-

1

LOAD

operand buffers described in a
queue prepared at the software
level, possibly next kernel con-
figuration

EXECUTE

a coarse grain computation on
the buffers. This is the kernel
of processes synthesized on the
RU

STORE back result to memory.

Table 1. Basic execution pipeline of an accel-
erated execution.

cation of data in memory and physical computation require-
ment on the RU. In our model, the RU can also exploit some
SIMD parallelism that the compiler should exploit too.

The paper is organized in four parts describing architec-
tural support for the coarse grain processor in Section 2,
compiler aspects in Section 3, synthesis issues in Section 4,
and before concluding, the validation of the concept with
expected performances illustrated on an example in Sec-
tion 5.

2 A communication architecture

2.1 Principles

Today SoC hardwares are mostly an assembly of general
purpose architectures and dedicated intellectual properties
(IP) functions. While the IPs are certainly desirable due to
their local efficiency, it is difficult to guarantee their perfor-
mances inside the global system. The economic interest of
one particular IP can also be the source of headaches con-
sidering the variability of application standards.

The proposed alternative to speed up computation pre-
serving hardware generality, is based on a small set of points
taking into account the platform organization and language
supports:

1. the data organization in memory should remain the
same for the processor and the accelerator(s) to avoid
major remodeling of the application,

2. level of interactions between the software part and the
accelerated part should remain small, with little over-
head on system activity,

3. the reconfigurable unit is isolated by local memories
on which a simple synthesized circuit operates.

sequential
program

sequential
program

Program production

Program execution

VM

Call to accelerated part (OS)

Resume from OS

Main memory

One CPU One RU

data
partitioning

Loop on

data execution

Figure 1. Execution flow with a call to the ac-
celerator.

This machine has basically shared memory characteris-
tics, but a serious gap exists between the accelerator capa-
bilities and those of a common processor. A first issue is
data reorganization, fetching, and storing back to memory
and, unfortunately, cache are not effective due to poor tem-
poral locality of data for streaming data. A second issue
is partitioning computations to deal with the local memory
constraints. And there is more, with the control of the ac-
celerator, elementary types from the high level language. ..

Our proposition is to integrate support for these issues
at the system level, for sake of performances and simplifi-
cation of compiler/synthesizer tasks. The idea is to embed
the accelerator into a virtual machine (VM) filling the gap
with the software tools. This denomination suits, because
VM are known to rise the level of the hardware services, re-
ducing the load on compiler tools, which is exactly the case
here. Furthermore, the execution model has synchronous
properties that allow to fit it as a virtual processor in coarse
grain parallel paradigms, such as SPMD computing.

Figure 1 shows the synoptic of a call to an accelerated
piece of code. An application program (possibly a thread)
suspends itself on a procedure call or an instruction.

The first part of the acceleration is the data partitioning

2

Column

Part of column

Part of row
Diagonal

Submatrix

Figure 2. Parts of a main memory data struc-
ture are relocated to local memories (or in-
versely). The figure shows some simple pat-
terns on 1D and 2D arrays.

operation. It consists of splitting the data into chunks that
will be transported to the accelerator by a Communication
Engine (CE). To be efficient, this operation will not actually
copy data, but just specify how the data are to be accessed
as address, strides, or more complex operations such as flat-
tened data structures called Memory to Memory Communi-
cation Descriptors (MMCD). We have chosen a strong cou-
pling between the CE and the accelerator because it leads
to the highest throuhput [11]. Figure 2 shows some chunks
of data mapped on simple data structures. Figure 3 shows
the relation between the data in main memory and the ac-
celerator local memories. Here, access to data chunks is
organized as a queue that will be read by the CE.

The data can be considered as operands for a program
in our VM. During one cycle of the VM, several load and
store operations must take place. The processing is specific
to the application, and is divided in cycles, even in case
where several hardware based processes retaining a state are
involved.

Thus the VM can be seen as a processor operating by cy-
cles where a set of load/store and execution will take place.
The VM is pipelined, allowing load, execute and write back
to overlap. In this machine, the data are normally not word
operands, but chunks of data on which the execution circuit
is applied, possibly with a very high degree of fine grain
parallelism, such as SIMD.

The operating system (OS) manage calls and returns,

Communication

r/w

Base
Offset
Count
Direction

Queue Links

r/w

Base
Offset
Count
Direction

Engine process

(local buffers) HRE

(main memory)

(reconfigurable unit)

Data Structure

Figure 3. Relations between load/store spec-
ifications (queues), main memory data struc-
tures and local memories.

b1

b2

c1

M

a1 a2
a3
a5

a4
a6

Figure 4. Data partitioning in a matrix prod-
uct.

checking for RU availability and resource allocation, in-
cluding the completion of a possible reconfiguration (hor-
izontal lines shown on Figure 1).

Our machine model is more easily explained on a simple
program such as a matrix product.

2.2 A matrix multiplication example

Let us suppose that we need to produce a product of ma-
trix on an RU.

We suppose that the accelerator has support to achieve
efficiently sums of products. The way in which this com-
putation is achieved, nor the data types involved will not be
discussed here. We just need to divide the data according to
buffer capacities or operators availability.

Figure 4 shows a partition where two matrices A and B
are divided in sub-lines and sub-rows. The resulting matrix
C will follow the same rule.

An execution is displayed in Table 2, each row being

3

Table 2. Pipelined execution showing ma-
chine cycles and communication identifiers
associated with load or store operation for
each cycle. The first cycle does not activate
execution. The first store operation will oc-
cur after the completion of 6 cycles involving
an execution.

machine stage stage stage
step xFerId load compute store

1 1 load a1
0 load b1

2 1 load a2 a1× b1
0 load b2 (continued)

3 0 load a3 a2× b2

4 0 load a4 a3× b1

5 0 load a5 a4× b2

6 0 load a6 a5× b1

7 0 load a7 a6× b2

8 1 a7× b1 store c1
0 load a8 (continued)

9 0
.
.
.

.

.

.
.
.
.

associated to one load and store, several of these operations
possibly occurring during a machine logical cycle. Such a
table can be computed at compile time by scheduling input,
output, and execution operations.

After building a schedule, it is possible to write a pro-
gram where transfers and execution are grouped into steps
which boundaries can be found at runtime by the commu-
nication engine. One of the CE responsibilities is to take
decisions on the pipeline progressions based on signals pro-
duced by the compute part.

The program associated with the matrix product could
be depicted as a sequence of load-store-execute instructions,
where the execution corresponds to a particular function ap-
plied to the local memories.

3 Compiler and language aspects

To ease the investigation of applications on the target ar-
chitecture, a compiler add-on prototype has been written. A
high level application written in C or Fortran can automati-
cally be transformed into a control code and the Heteroge-
neous Reconfigurable Engine (HRE) codes. The program-
mer choose the parts she wants to implement as an HRE in
our architecture by embracing it by compiler directives in
pseudo-comments. The idea for the programmer is to avoid
explicit programming in other stream or kernel-specific lan-
guages that are used in other projects such as [7].

The control code contains the scalar part of the appli-
cation, generates the MMCDs lists for each pipeline step,

launches the CE on these lists and synchronizes with it
when some data computed by some HREs are needed by
the control code or some other HREs.

Each HRE code is the C code of a marked part of the
original application code in a suitable form to be synthe-
sizable in a HRE. This C code can be directly used by a
synthesis tool to generate the HRE hardware description
or pretty-printed as SmallTalk for the Madeo synthesis tool
from UBO.

To implement our compiler, many high level analysis and
transformation phases must be applied to the code. Fur-
thermore, if some transformations can automatically be ap-
plied, some architectural knowledge is useful to transform
the code in such a way more suitable for this architecture.
This is why we advocate that an interactive tool is inter-
esting since it allows architectural exploration on the target
architecture. We have chosen the PIPS compiler framework
[2, 1] that is interactive, interprocedural to deal with bigap-
plications and comes with many high level analysis (polyhe-
dron based abstract interpretation. . .) and transformations
(vectorizers. . .) and in which we have a strong experience.

Even if the architecture can execute any code, it is more
efficient if the application code contains compute intensive
loop nests. So is our compiler: it will generate more ef-
ficient code on rather parallel regular loop nests because
it gives the opportunity to use regular MMCDs with fixed
strides. The target architecture can also have some SIMD
operators to exploit sub-word parallelism) and we’ve added
a phase to extract and generate code for these kind of in-
structions. Our compilation method is divided in 2 main
parts.

3.1 Code and data distribution

In order to program our accelerators or more generally
some massively parallel WPPAs (weakly programmable
processing arrays) with some standard high level programs,
we need to split these programs into 2 parts, the one that
will execute on the control host computer and the one that
will execute on the accelerator elements. Once this choice
done, the memory communication descriptors (MMCD) are
generated to orchestrate communications between the host
computer and the accelerator elements but also between the
accelerators and the memory.

The partitioning is chosen by the programmer by adding
directives to the source code to specify which parts will be
sped up on the accelerators. Afterward, phases have been
added in PIPS [2] to extract the accelerator code from the
original program, and to add interfaces at host program and
accelerators level to transfer data with the help of the MM-
CDs.

This compilation phases are divided in 3 main parts [12].

4

3.1.1 Analysis phase

First the program is analyzed with its partitioning directives
to

• detect the data to transfer between the host program
and the accelerators;

• analyze data dependencies in the code to know if com-
putations will be efficiently pipelined in the accelera-
tors;

• optimize the data transfers to group communications
with a constant stride in a MMCD that can directly ex-
press these communications.

3.1.2 MMCD generation phase

The host program must generate the MMCDs and launches
them at the good time for the good computation orchestra-
tion. So the aim of this phase is to transform the original
program and to automatically add these generation and or-
chestration functions.

The MMCD generator adds in the host program some
code to build the MMCDs on the fly to command and in-
teract with the accelerators, that is to transfer operands and
results but also execution requests. In this first part of the
project, we’ve chosen to use a robust dynamic method in-
spired from the concepts of inspector-executors [18, 4, 8]:
during the execution of the host program, we compute the
MMCDs that will be needed later. For each loop nest, the
MMCDs to transfer the operands are generated, then the
MMCDs to start the computations and at last the MMCDs
to send some results back to memory. At the end of each
accelerated part, some synchronization code is added to be
sure no results is lacking for the following of the program.

3.1.3 Code generation for the hardware accelerators

The code generator for the accelerators extracts the par-
titioned code from the main program into separate fonc-
tions that will run on the accelerators and will be fed by
the MMCDs. Interfacing with the external data are done
in this function codes by the call to the hardware macros
READ_BUFFER andWRITE_BUFFER that allow to peek
and poke into the hardware queues manipulated by the MM-
CDs.

3.2 SIMD code generation

In PIPS we have also developed some phases to generate
SIMD code that are useful to generate HRE code with this
kind of parallelism if we want to improve the throughput
of the operators [12]. This phases can also be used to opti-
mize the control code if a SIMD instruction set is available.

In order to have more portable output, we generate some
SIMD macro-code that can be retarget on different proces-
sors, even general purpose processors to debug our system
or to emulate the target code on a PC for example.

In order to exploit a maximum of parallelism, we use a
technique able to find parallelism in different loop-nest it-
erations but also between different unrelated expressionsin
basic blocs. We began by combining an automatic vector-
ization based on loop-unrolling [14] and superword paral-
lelism extraction [17]. These transformations have been im-
plemented in PIPS and integrated with some other already
existing transformations to reach the expected result [12]:

1. if-conversion : first, all the tests (traditionally
compiled into conditional jumps incompatibles with
SIMD) are replaced by predicate evaluation and pred-
icated move compatible with SIMD. Since it is a sen-
sitive choice in term of performance, some pragmas
can be added to precise which tests are converted or to
precise the instructions cost below to which any test is
automatically converted;

2. theexpression atomizertransforms complex expres-
sions and instructions into simpler ones close to the
instructions executed by the accelerators;

3. loop unrolling generates instructions groups with
many isomorph instructions that may be grouped to-
gether into SIMD operations if allowed also by the de-
pendence analysis;

4. reduction detection (also already in PIPS) is used to
remove some dependencies prohibitive for paralleliza-
tion [13];

5. in order to remove even more parasitic dependencies,
the source basic blocs are rewritten instatic single as-
signment(SSA) form;

6. and of course is thevectorization phase itself:

(a) isomorph instructions are reordered and grouped
according to a formal description of the available
operators on the target architecture with respect
to the dependencies on the code;

(b) the instruction groups are vectorized by select-
ing the most parallel SIMD instructions that deal
with operands big enough;

(c) SIMD code generation produces operand load se-
quences, compute and result writing sequences.
Some redundant operand loads are discarded if
several instructions use the same data or are use-
less, by using the dead-code elimination phases
from PIPS;

5

(d) at last, some loop invariant memory accesses are
hoisted outside the loop to improve the perfor-
mance.

3.3 Conclusion

More generally, PIPS can also be used to optimize the
code at the system level, for example by parallelizing the
code with several threads to run on several processors.

We’ve chose to use a rather dynamic method based on
inspector-executor compared to other teams that use more
static methods [7, 11] because we can deal with less regular
application without loosing too much performance on regu-
lar applications since we can use some partial evaluation in
this case.

Many improvement can be still done in our compiler
to get more performance on our architecture for more ap-
plications. We could deal directly with data remapping
to have more compact data more suitable for the MMCD
operations. Furthermore, the MMCD operations are right
now dynamically generated before each HRE use but this
MMCD lists could be cached for successive identical use or
even statically generated by the compiler with techniques
such as in [3] for more general high performance distributed
computing or as sketched in [10] for a high performance de-
coupled parallel vector machine.

The return experience on the code distribution part is that
it has been quite interesting to design the architecture and
the compiler at the same time because it allowed many in-
teractions and allowed us to refine some architectural points
to have real support for the compiler and no semantics clash
with the architecture.

Furthermore, since PIPS can prettyprint its internal
representations in different language, we can generate
free functional simulators in C instead of generate some
SmallTalk HDL hardware description for the Madeo
tool [16].

4 Architecture and synthesis for application
processes

The target architecture, with the organization of the exe-
cution as a set of processes are the entry points in the map-
ping problem.

Architectures are possibly fine grain architectures,
coarse grain reconfigurable data paths or mesh connected
small processors.

Organization methods can be applied by hand, compil-
ers, or code transformation tools. Depending on the ar-
chitectures, the mapping will first produce set of processes,
then apply architecture synthesis tools or code production.

An intermediate layer is being defined and developed to
handle the problem. The bottom part in this layer extends a

previous work achieved in the Madeo project [15, 9]:

• the description of the architecture is achieved on the
top of a set of classes enumerating coarse and fine
grain devices appearing in reconfigurable architec-
tures. A language and object model allows to define
connectivity and hierarchy levels in the target archi-
tecture organization;

• the input for a mapping is an application description
defined as a set of cooperating processes. Each process
is in turn defined as a low level control data flow graph
(CDFG-LL) connecting devices. These devices exist
in the support architecture and have known semantics,
due to the first point;

• mapping algorithms are in charge of resource alloca-
tion for processing, memory, and connectivity. The re-
sult is a mapped application that still needs to be trans-
lated in physical descriptions (bitstream configurations
or microcodes, initial values for memories, etc.).

Just above this layer, there will be transformation tools
using as input a high level CDFG corresponding to a pro-
cess oriented application description close to high level lan-
guages, and producing the output as a CDFG-LL in view of
a given architecture.

5 Validation & status

5.1 Cosimulation and performance analy-
sis

It is expected that variants of the proposed architec-
ture will be implemented on actual architectures in medium
term. To validate the functionalities and collect perfor-
mance analysis informations, a co-simulator has been de-
veloped.

The co-simulator is executed by three basic threads as
shown on Figure 5:

• a first thread represents the behaviour of the software
part of the program, described in C, or automatically
generated by a compiler, such as PIPS in Section 3;

• a second thread is produced by the compilation of the
systemC representation of the communication engine;

• the third thread represents the behaviour of the accel-
erated part of the program working on local memories.
This thread is to be synthesized on larger RU architec-
tures as a graph of operators and, possibly, some con-
trol. It is also expected that this part is to be extracted
by a compiler such as described in Section 3.

6

Communication
generator

Transformations

PIPS

Communication
Loop kernel
Accelerated

engine

Local C
original code

local memoriesDara in main memory

Queue
MMCD

Co−Simulation C/SystemC

(C thread)

(SystemC) (C thread)

(C thread)

Figure 5. Cosimulation, showing the com-
munication generator that produces data de-
scriptor in memory, the systemC model for
the communication engine, and C thread(s)
operating on local memories.

5.2 Performance analysis

5.2.1 On-going investigations

To compare with a pure software solution, we take parame-
terized measures of the cost of data partitioning, data com-
munication delays and execution delays appearing as the
pipeline cycle time. Estimated times (measured in clock
cycles) will be taken for the execution and network perfor-
mances.

The design flow used for the experiments is exposed on
Figure 7. PIPS compiler transforms an initial C code (taken
as specification) into two different C codes : one for the
generation of descriptors in memory, the other for the ac-
celerated function.

The numbering on this figure explains the behavior of the
reconfigurable system at runtime : mark labeled “1” refers
to the generation of memory descriptors (MMCDs), placed
in memory, while “2” and “3” refer to the parallel processes
reading and writing data from/to memory.

The marks “A” and “B” refer to the two compilation flow
options that are monitored during our experiments:

• “A” refers to a pure-software evaluation, answering the
question “how much time would it cost to run the ini-
tial function, as is, on the embedded processoronly ?”
(this means that the reconfigurable part appearing on
the drawing can be forgotten for this part, as it is not

(a) sequential

(b) parallel loops

exp1

exp2

exp3

loop

(c) unrolled loops

loop

loop

loop

R/W access to result buffer

Figure 6. Possible mapping of computations
with impact on data partitioning and distri-
bution. First case has affinity with sequen-
tial processing, case (b) is globally parallel
locally sequential, case (c) has affinity with
globally sequential an locally parallel, with
difficulties on data distribution outside the
HRE, and opportunities for expression opti-
mization during synthesis.

used in this case);

• “B” refers to the evaluation of our solution, based
on an embedded processor preparing MMCDs queues
for the reconfigurable accelerator. Note that in our
methodology, we also compile the accelerated func-
tion as an ARM function, in order to have a rough es-
timation of the complexity of this function, that can be
compared with a sequential implementation. As such,
the figures given for this part are over-pessimistic, as
the inherent parallelism of the function is not taken into
account here. In the next section, we provide formu-
lae to ponder and explore this measures by introducing
parallelism.

In both cases, thegcc toochain is retargeted for Strong-
ARM. The instruction simulator used is Simit-ARM.

5.2.2 Results

The experimental results are presented on Figure 8. They
represent the evaluation made on a simple application writ-
ten in C, by evaluating different instances of the execution,
based on the varying SIZE parameter. Despite its apparent
simplicity, the application (just as any other linear algebra
operating over big data domain) imposes severe data trans-
fers.

7

EXECUTABLE

SPECIFICATION

ARM

processor

Reconfigurable

Accelerator

ComEngine

DMA

Memory

arm−gcc cross−compilation

Simit−ARM instruction set simulator

mmcd

RECONFIGURABLE

ARCHITECTURE

ALL−SOFTWARE COMPILATION
PIPS

B

2

A

31

ORIG

C code

Descriptor

Preparation

Accelerated

function

Figure 7. Design flow used for the experi-
ments.

Algorithm 1 Original C code.

1 f o r (i = 0 ; i < SIZE ; i ++)
2 {
3 c [i] = c [i] + d [i] ;
4
5 f o r (j = 0 ; j < SIZE ; j ++)
6 {
7 c [i] = c [i] + a [i] [j] ∗ b [j] ;
8 }
9 }

The results exposed in the previous section show that the
computation time of a pure-software application (ORIG in
the sequel) is, for each sample measured, greater than the
sum of the two execution of MMCD production and accel-
erated function. In fact, these results should be interpreted
with care : they simply mean that the communication have
not been fully taken into account in this sum. More pre-
cisely, the gap between the two upper curves reflects the
time thatcan be allocated to communication : if the final
estimated communication time takes more time than this
difference, then the reconfigurable approach becomes un-
interesting with respect to a pure software solution1. This

1Please note that cache effects are not taken into account in this evalu-
ation.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 200 400 600 800 1000 1200

S
tr

on
g-

A
R

M
 s

im
ul

at
io

n
cy

cl
es

Data size

pure-sw
mmcd-production

accelerator
mmcd-production+accelerator

Figure 8. Results of ARM simulations: the x-
axis carries evolving matrix sizes (SIZE pa-
rameter). Four curves are drawn for (bottom-
up) dynamic production of MMCD, execution
of the acceleration by an ARM sequential pro-
cessor, cumulated execution and communi-
cation, original pure software execution. Ad-
ditional possible latencies implied by a slow
Network on Chip (NoC) are not figured by this
diagram. It is noticeable that the commu-
nication+execution transformed method car-
ries lot of opportunities compared to the pure
software execution.

is what we will estimate in the next section.

5.2.3 Extrapolation w.r.t Architecture characteriza-
tion

The previous results are brute-force results obtained just
through the ARM ISS simulation. As explained, they do
not represent the communication overhead introduced in the
architecture. In this section, we introduce new parameters,
that better characterize the SoC architecture initially con-
sidered. They are used to enhance the whole estimation of
the potential gains resulting from the use of MMCDs mech-
anism.

The parameters that we introduce here are:

1. the target clock frequencyf . We suppose that the ar-
chitecture has a single clock;

2. the bandwithB of the communication media (checked
between 2 and 16 GBits/s;

3. the average numbernop of elementary operations per-
formed by cycle on the accelerator: for this purpose,

8

we take as basis the number of instructions that would
be required on an ARM processor to execute the ac-
celerated function. We then makes the assumption that
each instruction can be executed by one elementary op-
eration. Then, to get the final execution time of the ac-
celerated function, by applying an increasing multipli-
cation factor accounting for the potential parallelism of
the application. This factor is checked between 2 and
30 operations/s.

The main objective is to show in which conditions the
ComEngine mecanism should be used instead of a pure em-
bedded software implementation, that is when the number
of software cyclesTSW is less than the number of cycles
found when running a reconfigurable solutionTRC. We de-
fine the number of cycles executed as follows:

TRC = TMMCD + S max(C, K)

whereS represents the number of macro-steps involved
in the computationC represents the communication cycles
on the network on chip, whileK is the number of cycles
executed on the coarse-grained accelerator. The use ofmax
function is justified by the fact that,by construction, our
compilation techniques overlapps computation and commu-
nications.

Let us now refine these definitions:

C =
(NMMCDSMMCD + NdataSdata)f

BS

K =
IARM

nopS

Finally the gain in percent is defined as:

G = 100
TSW− TRC

TSW

Using the preceeding experimental results for a single in-
stance of the application, and makingB, f andnop vary, we
obtain a set of data that are depicted on Figure 9. Of course,
the instance has been choosen as data intensive (for big
SIZE parameter). We have chosen to represent on Figures 9
the gain obtained with respect to bandwidth and accelerator
parallelism: we clearly show when our ComEngine mecan-
ism becomes interesting w.r.t. these two parameters.

6 Conclusion

We have presented a new RSoC (Reconfigurable
System-on-Chip) architecture based on some loosely cou-
pled reconfigurable hardware accelerators that process
compute-intensive parts of a program executed by one or
more processors. This allow to map different parts of a
global program on the same flexible hardware in an efficient

’explor9.log’ using 2:3:9

 0 2000 4000 6000 8000 10000 12000 14000 16000
Bandwidth

 0

 5

 10

 15

 20

 25

 30

Accelerator parallelism

-60

-40

-20

 0

 20

 40

 60

 80

RC/SW gain

’explor9.log’ using 2:3:9

 0 2000 4000 6000 8000 10000 12000 14000 16000Bandwidth 0
 5

 10
 15

 20
 25

 30

Accelerator parallelism

-60

-40

-20

 0

 20

 40

 60

 80

RC/SW gain

Figure 9. Two different views of the RC ver-
sus SW gain (percentage) obtained, w.r.t the
required bandwidth (in Mbits/s) and acceler-
ator internal parallelism (expressed in opera-
tions by clock cycle achieved).

way in the perspective of lower cost, still at high perfor-
mance and low consumption. The coupling with the global
memory is done by a communication engine that execute
memory transfer and execution descriptors precomputed by
the main processor(s). This computing model avoid reorga-
nizing too much the application to run on the SoC. Oper-
ating the reconfigurable hardware by itself is under control
of a virtual machine that fills the gap between the software
tools and the hardware.

The programming is simplified by the development of a
compiler that take a C or Fortran program with some anno-
tations, telling which parts to execute on the accelerator(s),
into a global sequential code that controls the data transfers
with the accelerators and the synchronizations. The com-
piler generates the code that will generate the transfer de-
scriptors, even for non static regular loop nests, by the useof
an inspector-executor-like method. Since stream processing

9

applications often express SIMD parallelism, we’ve added
automatic SIMD parallelization into the compiler to exploit
massive SIMD accelerators.

To validate our methodology, we’ve implemented a sim-
ulator in SystemC of our RSoC with a NoC and an ARM
processor that is able to execute our generated code. We’ve
extended the results with a small algebraic model that shows
that the methodology is interesting even with small paral-
lelism and low memory bandwidth.

We’ve designed the compiler at the same time as the ar-
chitecture and it was a rich co-design experience with pos-
itive interactions and feedback on the both sides. We’ve
decided for example to abandon double-buffer hardware be-
cause the compiler was not able to use it in the general case.
We implemented instead in the compiler a more flexible
way to deal with the accelerator memory.

Of course, the project is not finished and there are still
many improvements and refinements to be done at the hard-
ware (such as improvement that can be done with more ex-
pressive transfer descriptors [6]) and the software (to exploit
the polyhedral model present in PIPS to generate more effi-
cient code in the regular case).

Acknowledgements

This work has been funded by several ways:

• the European Morpheus project that targets the general
purpose use of reconfigurable logic inside SoC, and
develops an hardware/software platform;

• the CoMap French-German P2R project that aims
at developing software techniques and model for
massively parallel mapping on accelerators made of
weakly programmable processor arrays;

• the SAFESCALE project from the French National
Research Agency with contract ANR-05-SSIA-005-03
whose goal is to build a secure distributed execution
infrastructure and which some parts of the code distri-
bution are reused.

References

[1] C. Ancourt, F. Coelho, B. Creusillet, F. Irigoin, P. Jouvelot,
and R. Keryell. Pips: a workbench for program paralleliza-
tion and optimization. InEuropean Parallel Tool Meet-
ing’96, ONERA, Oct. 1996.

[2] C. Ancourt, F. Coelho, B. Creusillet, and R. Keryell. Howto
add a new phase in pips: the case of dead code elimination.
In Proceedings of the Sixth Workshop on Compilers for Par-
allel Computers (CPC’96), pages 19–30, Aachen, Germany,
Dec. 1996.

[3] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear
algebra framework for static HPF code distribution.Scien-
tific Programming, 6(1):3–27, Spring 1997. Special Issue —
High Performance Fortran Comes of Age.

[4] H. Berryman, J. Saltz, and J. Scroggs. Execution time
support for adaptative scientific algorithms on distributed
memory machines.Concurrency: Practice and Experience,
3(3):159–178, June 1991.

[5] E. Caspi, M. Chu, and R. H. et al. Stream computations orga-
nized for reconfigurable execution (SCORE): Introduction
and tutorial. InProceedings, Field-Programmable Logic
and Applications, Villach, Austria, August 2000.

[6] S. M. Chai, N. Bellas, M. Dwyer, and D. Linzmeier. Stream
memory subsystem in reconfigurable platforms. In2nd
Workshop on Architecture Research using FPGA Platform
(WARF’2006), 2006.

[7] A. Das, W. J. Dally, and P. Mattson. Compiling for stream
processing. InParallel Architectures and Compilation Tech-
niques (PACT’06), pages 33–42, 2006.

[8] K. Eswar, P. Sadayappan, and C.-H. Huang. Compile-time
characterization of recurrent patterns in irregular computa-
tions. In 1993 International Conference on Parallel Pro-
cessing, pages II–148–II–155. CRC Press, Inc., Aug. 1993.

[9] E. Fabiani, C. Gouyen, and B. Pottier. Intermediate level
components for reconfigurable platforms. In S. Vassiliadis
and A. Pimentel, editors,Synthesis, Architectures and Mod-
eling of Systems (SAMOS 3), Samos, Grece, 2004. Springer-
Verlag, LNCS.

[10] P. Fiorini, F. Irigoin, and R. Keryell. Modèle de compilation
d’HPF pour la machine MIMD à bancs mémoire et réseau
distribué programmable phénix. InRenPar’8, May 1996.

[11] A. Fraboulet and T. Risset. Master interface for on-chip
hardware accelerator burst communications.Journal of
VLSI Signal Processing, 2007. To appear.

[12] M. Godet. Compilation for an heterogeneous archi-
tecture with hardware accelerators including simd
instructions and reconfigurable operators with embedded
dma engines. Master’s thesis, ENSTBr, Sept. 2006.
https://comap.enstb.org/publications/
msc-of-matthieu-godet.

[13] P. Jouvelot and B. Dehbonei. A unified semantic approach
for the vectorization and parallelization of generalized re-
ductions. InICS, pages 186–194, 1989.

[14] A. Krall and S. Lelait. Compilation techniques for multime-
dia processors, 2000.

[15] L. Lagadec, B. Pottier, and O. Villellas-Guillen. An lut-
based high level synthesis framework for reconfigurable ar-
chitectures (25 pages). In S. Batttacharyya, E. Deprettere,
and J. Teich, editors,Domain-Specific Processors : Systems,
Architectures, Modeling, and Simulation. Marcel Dekker, N-
Y., Nov. 2003.

[16] L. Lagadec, B. Pottier, O. VillellasGuillen, E. Fabiani, and
C. Dezan. A lut based approach for high level synthesis on
fpga. InIWLAS workshop, New Orleans, June 2002.

[17] S. Larsen and S. Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets.ACM SIG-
PLAN Notices, 35(5):145–156, 2000.

[18] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman.
Run-time scheduling and execution of loops on message

10

passing machines.Journal of Parallel and Distributed Com-
puting, 8(4):303–312, Apr. 1990.

11

